RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2017-20] B.A./B.Sc. FIRST SEMESTER (July – December) 2017 Mid-Semester Examination, September 2017

Date : 12/09/2017 Time : 11 am - 1 pm **MATHEMATICS** (Honours)

Paper : I

Full Marks : 50

[3×4]

[4]

[Use a separate Answer Book for each group]

<u>Group – A</u>

1. Answer <u>any three</u> questions :

- a) If $x, y \in \mathbb{R}$ with y > 0 then prove that $\exists n \in \mathbb{N}$ such that ny > x.
- b) Prove that the union of a finite number of open sets in \mathbb{R} is open.
- c) For any set A in \mathbb{R} prove that $(A')' \subset A'$ i.e., the derived set of any set in \mathbb{R} is closed.
- d) Let G be an open set in \mathbb{R} . Show that the intersection of any two open intervals in G is either an empty set or contains more than one point.
- e) Prove that the sequence $\{u_n\}_n$ defined by $u_1 = \sqrt{2}$ and $u_{n+1} = \sqrt{2u_n} \forall n \in \mathbb{N}$ converges to 2.
- 2. If $ax^2 + 2hxy + by^2 = 0$ are two sides of a triangle and (α, β) is its orthocentre, prove that the equation of the third side is $(a+b)(\alpha x + \beta y) = a\beta^2 2h\alpha\beta + b\alpha^2$. [6]

OR,

Find the equation of the tangent to the conic $\frac{\ell}{r} = 1 - e \cos \theta$ at the point with vectorial angle α . [6]

- 3. a) Show by vector method that the medians of a triangle are concurrent. [3]
 b) If a, b, c are three non-coplanar vectors then show that the four vectors α = 6a 4b + 10c,
 - $\vec{\beta} = -5\vec{a} + 3\vec{b} 10\vec{c}$, $\vec{\gamma} = 4\vec{a} 6\vec{b} 10\vec{c}$ and $\vec{\delta} = 2\vec{b} + 10\vec{c}$ are coplanar. [4]

OR,

- 4. a) Show by vector method that an angle inscribed in a semi-circle is a right angle. [3]
 - b) Show by vector method that sin(A-B) = sin A cos B cos A sin B.

<u>Group – B</u>

- 5. ρ is defined on \mathbb{Z} (set of all integers) by $a\rho b$ if and only if $a^2 b^2$ is a multiple of 7. Is ρ an equivalence relation on \mathbb{Z} ?
- 6. "Every relation must either be symmetric or antisymmetric". Is the assertion right? Justify your answer.
- 7. a) $f = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid b = \sqrt{a}\}$. Check whether f is a mapping or not.
 - b) Give an example of a map from \mathbb{N} to \mathbb{N} which is surjective but not injective.
- 8. Give example of two maps f and g which are not bijective but gof is bijective.
- 9. Prove that \mathbb{Z}_7 forms a group with respect to the operation "addition modulo 7".
- 10. Let (G,*) be a group and $a, b \in G$. Suppose $a^2 = e$ and $a * b^4 * a = b^7$ where e is the identity in G. Prove that $b^{33} = e$.

<u>Group – C</u>

11. Answer any two questions :

a) Show that all circles of radius r are represented by the differential equation $(1+y_1^2)^{\frac{3}{2}} = ry_2$

where
$$y_1 = \frac{dy}{dx}$$
 and $y_2 = \frac{d^2y}{dx^2}$.

- b) If the differential equation Mdx + Ndy = 0 has one and only one solution, then prove that there exists an infinite number of integrating factors, where M and N are any functions of x and y only.
- c) Reduce the differential equation $y = 2px yp^2$ to Clairaut's form by the substitution x = X, $y^2 = Y$ and then obtain its complete primitive and singular solution, if any, where $p = \frac{dy}{dx}$.

12. Answer any one question :

- a) Solve the differential equation $(8p^3 27)x = 12p^2y$ and investigate whether a singular solution exists.
- b) Using the appropriate rule, find an integrating factor of the differential equation $(y^2 + 2x^2y)dx + (2x^3 xy)dy = 0$ and hence solve it.

_____× _____

(2)

[1×5]